Friday, September 1, 2017

REFINEMENTS TO SULZER ENGINES



The time-between-overhaul (TBO) of low speed marine diesel engines is largely determined by the piston running behaviour and its effect on the wear of piston rings and cylinder liners. Addressing this, Sulzer introduced a package of design measures in 1999, which are now standard on all new RTA engines and retrofittable to existing engines.
The TriboPack technology enables the TBO of cylinder components, including piston ring renewal, to be extended to at least three years and also allows a further reduction in the cylinder lubricating oil feed rate.

The design measures are:
—Multi-level cylinder lubrication.
— Fully and deep-honed cylinder liner with sufficient hard phase.
—Careful turning of the liner running surface and deep honing of the liner over the fulllength of the running surface.
— Mid-stroke liner insulation and, where necessary, insulating tubes in the cooling bores in the upper part of the liner.
—Pre-profiled piston rings in all piston grooves.
—Chromium-ceramic coating on the top piston ring.
— RC (Running-in Coating) piston rings in all lower piston grooves.
— Anti-polishing ring at the top of the cylinder liner.
— Increased thickness of chromium layer in the piston ring grooves.
A key element of TriboPack is the cylinder liner which is manufactured in cast iron, needs a controlled hard-phase content and the best grain structure in the running surface for both good strength and running behaviour. Careful machining followed by full deep honing to remove all damaged hard phase from the liner surface reportedly delivers an ideal running surface for the piston rings, together with an optimum surface microstructure. Deep honing of the full liner running surface is a prerequisite for maximizing the benefits of TriboPack, says Wärtsilä: its experience has shown that plateau honing of a wave-cut liner is not adequate because, once the plateau is worn down, the rings run on liner metal whose hard phase structure was damaged during machining. This damaged hard phase must be removed by deep honing. Pistons have four rings, all of the same thickness. The chrome-ceramic top ring, proven in Wärtsilä four-stroke engine practice, has a cast iron base material. The running face is profiled and coated with a layer of chromium as a matrix into which a ceramic material is trapped. High operational safety and low liner and ring wear have been demonstrated, with a much better resistance to scuffing than any other ring material, Wärtsilä asserts. Good performance is conditional, however, on using the chrome-ceramic rings in conjunction with a deep-honed liner. The other piston rings have a running-in and anti-scuffing coating which fosters a safe and swift running-in of the engine when the liners are deep honed. The anti-polishing ring (APR) prevents the build-up of deposits on the top land of the piston which can damage the lube oil film on the liner and cause bore polishing. Deposit build-up can be heavy in some engines, especially those running on very low sulphur content fuel oil (less than one per cent sulphur) combined with an excessive cylinder lube oil feed rate. If such deposits are allowed to accumulate, they inevitably touch the liner running surface over a large part of the piston stroke. The lube oil film can then be wiped off, allowing metalto-metal contact between the piston rings and liner; in the worst case there can be scuffing. Applied as standard for some years on Wärtsilä four-stroke engines, the thin alloy steel APR is located in a recess at the top of the liner and has an internal diameter less than the cylinder bore to reduce the clearance to the piston top land. It does not need to be specifically fixed, as the thermal expansion of the hot ring keeps it tightly in place. The steel material was selected to ensure and maintain a high safety margin against thermal yielding. Excessive deposits are scraped off the piston top land at every stroke while they are still soft, thus preventing hard contact between the deposit and the liner wall surface. The oil film on the liner wall remains undisturbed and can fulfil its function. The APR also stops the upward transportation of new lube oil by the layer of deposits to the top of the liner where it is burned instead of being used for lubrication. The ring is thus effective in allowing the lube oil feed rate to be kept down to recommended values. Load-dependent cylinder lubrication is provided by Sulzer’s multilevel accumulator system, the lubricating pumps driven by frequencycontrolled electric motors. On the cylinder liner, oil distributors bring oil to the different oil accumulators. For ease of access, the quills are positioned in dry spaces instead of in way of cooling water spaces. It is also important that the liner wall temperature is adapted to keep the liner surface above the dew point temperature over the whole of the piston stroke to avoid cold corrosion and maintain good piston-running conditions. The upper part of the liner is bore cooled with cooling water passing through tangential drillings in the liner collar. The mid-stroke region of the liner is cooled by a water jacket, and only the lower part is uncooled. There is often a tendency for liner temperatures to be too low, thus leading to corrosive wear from the sulphuric acid formed during combustion. Wärtsilä applies two insulating techniques to secure better temperature distributions. For some years, PTFE insulating tubes have been fitted in the cooling bores of the liner. As part of TriboPack, the liner is now also insulated in the mid-stroke region by a Teflon band on the water side. The insulating tubes are adapted according to the engine rating to ensure that the temperature of the liner running surface is kept above the dew point temperature of water over the full length of the stroke and over a wide load range. Mid-stroke insulation and, where necessary, insulating tubes are therefore used to optimize liner temperatures over the piston stroke. An insulation bandage in the form of Teflon bands with an outer stainless steel shell is arranged around the outside of the liner to raise liner wall temperatures in the mid-stroke region. Mid-stroke insulation is known to be particularly useful for sustained engine operation at low power outputs, while the TriboPack gives an additional safety margin in abnormal operating conditions (for example, against excessive carbon deposits built up on the piston crown). While trying to avoid corrosive wear by optimizing liner wall temperatures, it is necessary to keep as much water as possible out of the cylinders. Highly efficient vane-type water separators fitted after the scavenge air cooler and effective water drain arrangements are thus vital for good piston running behaviour. Load-dependent cylinder lubrication is provided by the Sulzer multi-level accumulator system, which ensures the timely quantity of lube oil for good piston running. The lube oil feed rate is controlled according to the engine load and can also be adjusted according to the engine condition.
Piston rod glands
Time-between-overhauls of crosshead engines are partly defined by the piston rod glands, in the sense that their removal for exchange of elements is often connected to a withdrawal of the piston and piston rod assembly. The gland elements and piston rods therefore need to have a long life expectation (TBO of three years or more). At the same time, they have to assure sealing of the crankcase from the piston underside, limit contamination of crankcase system oil by combustion residues, and keep the oil consumption at a reasonable level for maintaining oil quality. Recent improvements have introduced additional gas-tight top scraper rings, stronger springs for the other scraper rings, enlarged drain channels for the scraped-off oil, and the exclusive application of bronze scraper rings on fully hardened rods. The drain quantities from the neutral space were reduced by a factor of three. Additionally, the scraped-off oil is reusable without any treatment and therefore can be directly fed back internally in the gland box to the crankcase. System oil consumption figures were significantly reduced. The design of the gland box housing was modified, allowing it to be dismantled either upwards during piston overhaul or downwards without pulling the piston. Complete retrofit packages available for all RTA engines in service comprise the newly-designed upper scraper, new middle sealing and new lower scraper groups, and some modifications on the gland box housing. The upper scraper group consists of a two-piece housing with newly-designed oil scraper rings made of bronze, newly-designed gas-tight sealing rings and modified tension springs. The oil scraper rings consist of four segments conforming better to the piston rod. Two new seal rings in three parts and adapted tension springs were introduced for the middle seal group. For the lower scraper group, all rings are of bronze, since Teflon has an inferior performance when there is an increased amount of hard particles in the oil residues coming from the piston underside. Here, the new scraper rings comprise three slotted segments for adaptability to the piston rod; they are provided with grooves at the top to promote draining of the scraped oil. The actual surface condition and shape of the piston rod is of paramount importance, Wärtsilä advises. Ideally, the new glands should be used with hardened piston rods. Existing rods can be retained, however, providing their surface condition and geometry are acceptable, before introducing any new stuffing box elements. If the rod is worn down, roughened or otherwise surface damaged it can be ground to standard diameters of 2 mm or 4 mm undersize and then surface hardened.
Exhaust valve behaviour
The exhaust valve is subjected to hot gases and the temperature resistance of its seat and body is therefore crucial. Nimonic valves combined with proper seat cooling have yielded excellent service behaviour and long life times. When the RTA96C engine was introduced, and its shallow combustion space created difficult conditions for combustion chamber components, some exhaust valves were additionally coated with Inconel alloy. After limited running times, however, there was some cracking of the coating originating from the centre hole, with loosened material, making removal by grinding necessary. Noncoated valves, on the other hand, showed excellent performance, remaining free of cracks after over 14 000 running hours, without any loss of material. Today’s standard therefore is the non-coated valve. Piston crowns Burning off of material on piston crowns is very dangerous as hole formation leads to direct contact of the combustion flame with the piston cooling oil system and dire consequences. The use of the combined shaker and jet cooling system in RTA engines assures piston crown temperatures below 400 ∞C and thus eliminates such burning.


5 comments:

  1. This website and I conceive this internet site is really informative ! Keep on putting up! Directional drilling has been an integral part of the oil and gas industry. Tools utilized in achieving directional drills include whipstocks, bottom hole assembly (BHA) configurations, three-dimensional measuring devices, mud motors, and specialized drill bits. We will help you get the best quote for directional drilling tools and directional drilling services. Here is the list of directional drilling compaines with an excellent track record for best results. list of directional drilling companies

    ReplyDelete
  2. Liners and Overhauls
    very nice blog! Oil producers that have worked with Euro Gear have reported back incredible results of our reversed engineered / overhauled gearbox to last as long as 3 competitors gear boxes that have been swapped out, in exact operating environmental conditions.

    ReplyDelete
  3. Thank you for an Enlightening post. company is one of best leading manufacturers of Power Press Manufacturer in Delhi. We are specialized in the installation and maintenance of Ring Separator Machines. Visit our website for more details.
    Ring Separator Manufacturer in Delhi
    ROPP Caps Making Machinery
    Air Blower Machine Manufacturer in Delhi
    Aluminum Caps Making Machinery
    Inspection Conveyor Belt System Manufacturers in Delhi

    ReplyDelete

  4. You really share a great post and keep sharing more content like this! Thanks

    buy tire chains for snow
    tire chains for snow

    ReplyDelete
  5. Thank you for beautiful content, Please keep posting blogs like this
    Software Development Company

    ReplyDelete